Dissurĵeto
Matematikaj funkcioj |
---|
Argumentaro, Celaro, Bildaro, Malbildo |
Fundamentaj funkcioj |
algebraj funkcioj: konstanta • lineara • kvadrata • polinoma • racionala • Transformo de Möbius ceteraj funkcioj: trigonometriaj • inversa trigonometria • hiperbola • eksponenta • logaritma • potenca |
Specialaj funkcioj |
erara • β • Γ • ζ • η • W de Lambert • de Bessel |
Nombroteoriaj funkcioj: |
τ • σ • de Möbius • φ • π • λ |
Ecoj: |
pareco kaj malpareco • monotoneco • bariteco • periodeco • disĵeteco • surĵeteco • dissurĵeteco kontinueco • derivaĵeco • integralebleco |
Matematika funkcio nomiĝas dissurĵeto (aŭ bijekcio, aŭ inversigebla funkcio), se ĝi estas disĵeto kaj surĵeto.
Formala difinoRedakti
Oni povas difini dissurĵetan funkcion ankaŭ rekte, sen mencii la nociojn disĵeto kaj surĵeto:
- Estu funkcio ("ĵeto") de al , t.e. .
- estas dissurĵeto, se por ĉiu el ekzistas unu kaj nur unu el tia, ke kaj por ĉiu el ekzistas tia el , ke .