Malfermi la ĉefan menuon

En matematiko, hiperoperatoro estas funkcio de tri argumentoj, aŭ familio de la hiper-n funkcioj de du argumentoj:

(Vidu en supren-saga skribmaniero de Knuth kaj ĉenita saga skribmaniero de Conway.)

Derivaĵo de la skribmanieroRedakti

La skribmaniero povas vidiĝi kiel konforma al la demando "kio estas venonta en ĉi tiu vico?":

Noto ke estas la rikuraj rilatoj:

  •  
  •  
  •  

Okazo de n=0 estas konforma laŭ la postanta funkcio (adicio de 1).

La rikura difino de la hiperoperatoro estas:

 

Ĉi tio donas ke:

 

 

 

Por n=4 estas hyper4supereksponento, superpotencigo aŭ potenca turo:

 

La alia skribmaniero por supereksponento estas

 

Ekzemplo de uzo de la rikura difino:

 

La familio ne estas etendita de naturaj nombroj al reelaj nombroj ĝenerale por n>3, pro neasocieco en la "evidenta" vojoj de farante ĝi.

Pritakso de maldekstro al dekstroRedakti

Alternativo por ĉi tiuj operatoroj estas ricevita per pritakso de de maldekstro al dekstro. Estu (kun subaj indicoj anstataŭ supraj indicoj)

 

kun

 
 
  por n>2

Pro tio ke

 
 
 

rezultiĝas ke   por n≤3.

Sed ĉi tiu formo ne donas la potencan turon tradicie atendatan de hyper4:

 

Kial povas   estas la sama kiel   por n≤3, sed malsama por n>3? Ĉi tio estas pro simetrio (asocieco) de adicio kaj multipliko, sed kiu potencigo ne estas simetria.

Vidu ankaŭRedakti

Eksteraj ligilojRedakti