Korpo (algebro)
ringo, kies multiplika semigrupo de nenulaj elementoj estas grupo.
Korpo estas grava nocio en moderna algebro. Ĝi estas aro de elementoj, por kiu estas difinitaj operacioj de adicio, subtraho, multipliko kaj divido, posedantaj kutimajn ecojn de nombro-operacioj.
Korpo estas ringo tia, ke estas grupo.
Se la grupo estas komuta, oni nomas la korpon kampo.
Ekzemploj de kampoj estas la kompleksaj nombroj, la reelaj nombroj aŭ la racionalaj nombroj.
Ekzemplo de nekomuta korpo estas la kvaternionoj.
Aksiomoj
redaktiOni povas karakterizi la nocion korpo K per jenaj aksiomoj.
Aksiomoj de adicio
redakti- Por ĉiuj a, b ∈ K, estas difinita unusola elemento a+b ∈ K, nomata sumo de la elementoj a kaj b (do + estas duvalenta interna operacio sur K).
- Por ĉiuj a, b, c ∈ K, a+(b+c) = (a+b)+c (asocieco).
- Por ĉiuj a, b ∈ K, a+b = b+a (komuteco).
- Ekzistas elemento 0 ∈ K tia, ke a+0 = a por ajna a ∈ K. 0 nomiĝas nulo, kaj estas la neŭtrala elemento de +.
- Por ĉiu a ∈ K, ekzistas b ∈ K tia, ke a+b = 0. (b nomiĝas la adicia inverso de a; oni kutime skribas −a).
Aksiomoj de multipliko
redakti- Por ĉiuj a, b ∈ K, estas difinita unusola nombro a·b ∈ K, nomata produto de la elementoj a kaj b (do · estas duvalenta interna operacio sur K).
- Por ĉiuj a, b, c ∈ K, a · (b · c) = (a · b) · c (asocieco).
- Ekzistas elemento 1 ∈ K tia, ke a · 1 = a por ajna a ∈ K. 1 nomiĝas unu kaj estas la neŭtrala elemento de ·.
- Por ĉiu a ∈ K, a ≠ 0, ekzistas b ∈ K tia, ke a · b = 1. (b nomiĝas la multiplika inverso de a; oni kutime skribas a-1 aŭ 1/a).
Aksiomoj de distribueco
redakti- Por ĉiuj a, b, c ∈ K, a · (b+c) = a · b + a · c.
- Por ĉiuj a, b, c ∈ K, (a+b) · c = a · c + b · c (distribueco).
Se por ĉiuj a, b ∈ K, a · b = b · a (komuteco de multipliko), la korpo K nomiĝas kampo.