Maso
![]() |
Por aliaj signifoj, bv. rigardi la apartigilan paĝon: Maso (apartigilo) |
Maso (el la greka: μᾶζα, máza, "hordea kuko," "pastobulo") estas fizika grando de materiaj korpoj, kiu determinas ilian dinamikan konduton kiam ili estas submetitaj al influo de eksteraj fortoj.
Ĝi ankaŭ estas mezuro de la inercio de la korpo, la rezisto al akcelado (ŝanĝo de rapideco) kiam neta forto estas aplikata. La maso de objekto ankaŭ determinas la forton de sia gravita altiro al aliaj korpoj.
Laŭlonge de la historio de fiziko, precipe de klasika fiziko, maso estis konsiderata kiel eneca propraĵo de materio, kiu povas esti reprezentita kun skalara valoro kaj kiu estas konservita dum tempo kaj spaco, restante konstanta en ĉiu izolita sistemo. Krome, la esprimo maso estis uzita por indiki du eble apartajn kvantojn: la interagado de materio kun la gravita kampo kaj la rilato kiu ligas la forton aplikitan al korpo kun la akcelo induktita sur ĝi. Tamen, la ekvivalento de la du masoj estis kontrolita en multaj eksperimentoj (jam efektivigitaj de Galileo Galilei unue).[1]
La maso de iu korpo estas sama kie ajn ĝi estas en la universo.
En fiziko estas du manieroj ĝin difini (la ekvivalenteco de tiuj du difinoj ne estas memkomprenebla kaj nomiĝas "ekvivalentec-principo"):
Ne intermiksu la mason kaj la pezon. La pezo de iu objekto mezuras la interagadon de ĝia maso kun kampo de gravito. (La pezo estas forto.)
Ilo por mezuri mason de iu objekto estas pesilo.
En fiziko, laŭ la teorio de relativeco maso povas esti konvertita en energion, kaj inverse. En relativeco la maso de korpo ne estas fiksa grando sed dependas de la rapido de la korpo relative al la observanto, kun la diferenco nekonsiderinda ĉe rapidoj multe pli malgrandaj ol la lumrapido. La masenergia ekvivalento estas la rilato inter maso kaj energio en la ripoza kadro de sistemo, kie la du valoroj diferencas nur per konstanto kaj la mezurunuoj. La principon priskribis la fama formulo de la fizikisto Albert Einstein: . La formulo difinas la energion de partiklo en ĝia ripoza kadro kiel la produto de maso () kun la kvadratita lumrapido (). La principo estas fundamenta por multaj kampoj de fiziko, inkluzive de nuklea kaj partikla fiziko.
En la norma modelo de partikla fiziko maso ne estas baza eco: ĝi estas formita por kelkaj el la elementaj partikloj kiel rezulto de reago kun Higgs-bosono, dum aliaj partikloj restas senmasaj, kaj por kompleksaj partikloj la maso ankaŭ inkluzivas la ligan energion de la partikloj.
Partikla teorioRedakti
Higgs-bosono estas elementa partiklo kiu laŭ la norma modelo partoprenas en mekanismo de Higgs kiu donas al multaj elementaj partikloj iliajn masojn.
Partikuloj senmasajRedakti
Partikloj, kiuj peras la fundamentajn fortojn, ne havas mason.
- La fotono, fundamenta partiklo kiu konsistigas la kvantumon de la elektromagneta kampo kaj portas la potencon de la elektromagneta forto, ne havas mason.
- La gluono, la elementa partiklo, kiu portas la forta nuklea forto, ne havas mason.
- עד ל-1990 הוסבר לפי מודלים שונים כי לניטרינו, חלקיק יסודי פרמיוני, המהווה לפטון נטול מטען חשמלי, אין מסה.
- Ĝis 1990 oni klarigis laŭ diversaj modeloj, ke neŭtrino, elementa partiklo, kiu konsistigas fotonon sen elektra ŝargo, ne havas mason. Tiun saman jaron, du esploristoj, la japana Takaaki Kajita kaj la kanada Arthur McDonald, samtempe pruvis en du malsamaj studoj, ke neŭtrinaj partikloj ja havas mason. La studoj trovis, ke la sumo de la masoj de la tri "gustoj" de la neŭtrino estas proksimume 0,12 eV. Ĉi tiu estas la plej malalta maso de iu masa partiklo. Pro tio, la du esploristoj gajnis la Nobel-premion pri fiziko en 2015.
- Gravitono, kiu estas teoria partiklo kiu portas graviton, supozeble estas senmasa.
Vidu ankaŭRedakti
- pezo
- molekula maso
- milgrajna maso
- maso de Planck
- denso kaj aerdenso
- Sojla maso, la minimuma maso necesa por komenci ĉenreakcion en fisiobombo
ReferencojRedakti
- ↑ Tiu ekvivalenteco konsistigas la koron de la malforta principo de ekvivalenteco, unu el la ĉefaj indicoj kiuj igis Albert Einstein konstrui la teorion de ĝenerala relativeco.