Reelo: Malsamoj inter versioj

107 bitokojn aldonis ,  antaŭ 12 jaroj
sen resumo de redaktoj
'''Reelaj nombroj''' (aŭ ''reeloj'' aŭ ''realaj nombroj'') estas intuicie definitaj kiel [[nombro]]j kiuj estas [[bijekcio|bijekciaj]] al la punktoj sur infinitamalfinia [[linio]], la [[nombra linio]]. La vorto ''reela nombro'' estis konstruita responde kaj kontraste al [[kompleksa nombro|imaginara nombro]].
 
Reelaj nombroj povas estis [[racionala nombro|racionalaj]] aŭ [[neracionala nombro|neracionalaj]]; [[algebra nombro|algebraj]] aŭ [[transcenda nombro|transcendaj]]; kaj [[pozitiva nombro|pozitivaj]], [[negativa nombro|negativaj]] aŭ [[nulo]].
===Aksiomoj de la reelaj nombroj===
Oni povas karakterizi la [[kampo (algebro)|kampon]] de reelaj nombroj per tiuj [[aksiomo|aksiomoj]] (ĝis [[izomorfio]]):
* laLa '''[[kampo (algebro)|kampo-aksiomoj]]''' de [[adicio]], [[multipliko]] kaj [[distribueco]]
* '''Aksiomo de [[ordo]]''', unu el la du ekvivalentaj aksiomoj
** ekzistas harmonia [[tuteca ordo]] '''(K, <=)''' (do el '''0<a''' kaj '''0<b''' sekvas '''0<a+b''' kaj '''0<a·b''')
*** <math>K = K_+ \cup {0} \cup -K_+</math>
*** Se <math>a,b \in K_+</math>, tiam <math>a+b \in K_+</math> kaj <math>ab \in K_+</math>
* unuUnu el la (ekvivalentaj) aksiomoj de '''kompleteco''':
** ''[[Aksiomo]] de [[WEIERSTRASS|Weierstrass]]'':
***"Ĉiu nemalplena limigita desupre nombra aro havas solan supran limon".
**''[[Aksiomo]] de [[Georg Cantor|Cantor]]''
*** "Ĉiu kolektiĝanta sistemo de detranĉoj {[An, Bn]} de nombra linio, havas solan nombron, kiu apartenas al ĉiuj detranĉoj".
 
Ankaŭ estas la [[aksiomo de Cantor-Dedekind]] kiu priskribas rilaton de reelaj nombroj al [[geometrio]].
 
===Demonstrado de Cantor pli la "pligrandeco" de la infinito de reelaj===
34 175

redaktoj