Ordonombro: Malsamoj inter versioj

86 bitokojn aldonis ,  antaŭ 11 jaroj
+Vidu ankaŭ
e (roboto aldono de: ro:Numeral ordinal)
(+Vidu ankaŭ)
Eble oni povas ekhavi plian intuician komprenon de ordinaloj post pripenso de kelkaj unuaj el ili. Kiel supre-menciite, la aro komencas je naturaloj (inkluzive nulon): 0, 1, 2, 3, … Post ''ĉiuj'' naturaloj sekvas la unua transfinia ordinalo ω, kiun sekvas ω+1, ω+2, ω+3, ktp. (Poste ni difinos pli precize kion signifas la adicio kuntekste de ordinaloj; nun kosideru tion simple kiel nomojn). Post ĉiuj tiuj sekvas ω·2 (aŭ ω+ω), ω·2+1, ω·2+2, ktp, poste, sammaniere, ω·3, ω·4, … Nun konsideru ni la aron de ordinaloj, kiuj formiĝas ĉi-maniere - kiel ω·''m''+''n'', kie ''m'' kaj ''n'' estas naturaloj. Estiel aro, ĝi devas mem enhavi asociitan ordinalon, kaj tiu markiĝas kiel ω<sup>2</sup>. Plue sammaniere ni difinos na ω<sup>3</sup>, poste na ω<sup>4</sup>, ktp, ĝis ω<sup>ω</sup>, poste, post sekva iteracio, na ω<sup>ω²</sup>, ktp ĝis ε<sub>0</sub> (''[[epsilono nula]]'') Tiuj ĉiuj ankoraŭ estas relative malgrandaj (nombreblaj) ordinaloj. Tiel ni povas daŭrigi nefinie. Ordinaloj estas aparte taŭgaj por nefinie grandaj numeradoj: preskaŭ ĉiam, kiam oni diras "kaj tiel plu" numerante ordinalojn, oni per tio jam difinas pli grandan ordinalon. La plej malgranda nenombrebla ordinalo estas aro de ĉiuj nombreblaj ordinaloj, markita per ω<sub>1</sub>.
 
== Difinoj ==
 
== Vidu ankaŭ ==
 
* [[Numero]]
* [[Kardinala nombro]]
* [[Limiga orda numero]]
 
== Referencoj ==
 
==Referencoj==
<references/>
 
34 175

redaktoj