Momanto (statistiko): Malsamoj inter versioj

Korespondas ---> Kongruas
e (r2.7.3) (robota aldono de: vi:Mô men (toán học))
(Korespondas ---> Kongruas)
En [[statistiko]], la '''momantoj''' estas mezuroj de ''distribua funkcio'' de [[hazarda variablo]]. Ili korespondaskongruas al la ''parametroj'' de la priskriba statistiko.
 
La momanto de grado k>0 pri [[hazarda variablo]] ''X'' estas, se ekzistas, la [[atendata valoro]] de ''X''<sup>k </sup> , t.e. : <math>m_k = \operatorname{E}[X^k] \ .</math>
Iaj momantoj estas konitaj per apartaj nomoj. Ili estas kutime uzataj por karakterizi hazardan variablon.
 
* ''La unua momanto'' de variablo: <math>m_1 = \operatorname{E}[X]</math> , ofte notata <math>\mu \ </math> aŭ iam <math>m \ </math>, simple korespondaskongruas al la [[atendita valoro]].
 
* ''La dua centra momanto'': <math>\mu_2 = \operatorname{E}[(X-\mu)^2]</math>, ofte notata <math>\sigma^2 \ </math>, <math>\sigma_X^2</math>, <math>\operatorname{var}(X)</math>, korespondaskongruas al la [[varianco]].
 
* ''La tria norma centra momanto'': <math>\gamma_1 = \frac {\mu_3} {\sigma^3} = \operatorname{E} \left[ \left(\frac{X-\mu}{\sigma} \right)^3 \right] \ </math>, korespondaskongruas al la ''asimetriokoeficiento''. Ĝi permesas mezuri asimetrion de [[probablodistribuo]], kaj estas pozitiva aŭ negativa; evidente, ĝi nulas pri (simetria) [[normala distribuo]].
 
* ''La kvara norma centra momanto'' : <math>\beta_2 = \frac{\mu_4} {\sigma^4} = \operatorname{E}\left[\left(\frac{X-\mu}{\sigma}\right)^4\right] \,</math> korespondaskongruas al la ''kurtosiso'' (el greka termino, kiu signifas ''ŝvelo''). Ĝi permesas mezuri diferencojn inter distribuokurboj; akra pinto kun longa vosto havas grandan kurtosison, aŭ runda supro kun mallonga vosto havas malgrandan kurtosison. Pri [[normala distribuo]] <math>\beta_2 = 3 </math>, tial ke oni foje konsideras <math>\gamma_2 = \frac {\mu_4} {\sigma^4} - 3 </math>, kiu estas aŭ pozitiva (granda kurtosiso), aŭ negativa (malgranda kurtosiso), aŭ nula ("kvazaŭ" normala distribuo).
 
== Rilatoj inter ordinaraj kaj centraj momantoj ==
:<math>m_4 = \mu_4 + 4\,m_1\mu_3 + 6\,m^2_1\mu_2 + m^4_1\, .</math>
 
== Vidu ankaŭ ==
* [[Momanto]]
 
[[Kategorio:Probablodistribuoj]]
11 505

redaktoj