Fibonacci: Malsamoj inter versioj

141 bitokojn aldonis ,  antaŭ 4 jaroj
sen resumo de redaktoj
[[Dosiero:Fibonacci2.jpg|eta|dekstra|Fibonacci]]
[[Dosiero:Leonardo da Pisa.jpg|eta|dekstra|180px|19a-jarcenta statuo de Fibonacci en Camposanto, Pisa.]]
'''Leonardo Pisano''' {{Prononco|Leo'''nar'''do Pi'''za'''no}} aŭ '''Leonardo da [[Pisa]]''' {{Prononco|Leo'''nar'''do da '''Pi'''za}} (naskiĝis [[1175]], mortis ĉ. [[1250]]), ankaŭ konata kiel '''Fibonacci''' {{Prononco|Fibo'''na'''ĉ:i}}, estis [[Italio|itala]] matematikisto - la unua granda eŭropa matematikisto post la malprospero de la [[helenoj|helena]] scienco. Li estis konata pro la invento de [[Fibonaĉi-nombroj]] kaj pro sia rolo en enkonduko de [[eŭropaj ciferoj]] en [[Eŭropo]].
 
 
==''Liber Abaci'' (1202)==
[[Image:Liber abbaci magliab f124r.jpg|thumb|Paĝo de la verko de Fibonacci nome ''[[Liber Abaci]]'' el la [[Nacia Centra Biblioteko de Florenco]] montranta (en la dekstra skatolo) la Fibonacci-sekvencon kun la loko en la sekvenco etikedita per romiaj nombroj kaj la valoro per hind-arabaj nombroj.]]
{{redaktata}}
[[Image:Liber abbaci magliab f124r.jpg|thumb|A page of Fibonacci's ''[[Liber Abaci]]'' from the [[National Central Library (Florence)|Biblioteca Nazionale di Firenze]] showing (in box on right) the Fibonacci sequence with the position in the sequence labeled in Roman numerals and the value in Hindu-Arabic numerals.]]
{{Ĉefartikolo|Liber Abaci}}
In the ''Liber Abaci'' (1202), Fibonacci introduced the so-called ''modus Indorum'' (method of the Indians), today known as Hindu-Arabic numerals.<ref name="Sigler2002">{{citation | title = Fibonacci's Liber Abaci | last = Sigler | first = Laurence E. (trans.) | publisher = Springer-Verlag | year = 2002 | isbn = 0-387-95419-8}}</ref><ref>Grimm 1973</ref> The book advocated numeration with the digits 0–9 and [[place value]]. The book showed the practical use and value of the new Arabic [[numeral system]] by applying the numerals to commercial [[bookkeeping]], converting weights and measures, calculation of interest, money-changing, and other applications. The book was well received throughout educated Europe and had a profound impact on European thought. No copies of the 1202 edition are known to exist.<ref name=":1" />
 
InEn thela ''Liber Abaci'' (1202), Fibonacci introducedenkondukis thela so-calledtiel nomata ''modus Indorum'' (method ofmetodo thede IndiansHindianoj), todaynuntempe knownkonata askiel Hinduhind-Arabicarabaj numeralsnombroj.<ref name="Sigler2002">{{citation | title = Fibonacci's Liber Abaci | last = Sigler | first = Laurence E. (trans.) | publisher = Springer-Verlag | year = 2002 | isbn = 0-387-95419-8}}</ref><ref>Grimm 1973</ref> TheLa booklibro advocatedpostulis numerationnumeradon withper thela digitsciferoj 0–9 andkaj [[placePozicia valuenombrosistemo|pozician nombrosistemon]]. TheLa booklibro showedmontris thela practicalpraktikan useuzado andkaj valuevaloron ofde thela newnova Arabicaraba [[numeral systemnombrosistemo]]n byper applyingaplikado thede numeralsnombroj toal commercialkomerca [[bookkeepinglibrotenado]], convertingŝanĝante weightspezojn andkaj measuresmezurojn, calculationkalkuladon ofde interestinterezo, moneymon-changingŝanĝadon, andkaj otheraliajn applicationsaplikaĵojn. La Thelibro bookestis wasbone wellricevita receiveden throughoutla educatedtuta Europeedukita andEŭropo hadkaj afaris profoundprofundan impactafikon onsuper Europeaneŭropa thoughtpensaro. NoOni copiesne ofkonas theekzistantajn 1202kopiojn editionde arela eldono de 1202 knownde totiu existlibro.<ref name=":1" />
The 1228 edition, first section, introduces the Arabic numeral system and compares the system with other systems, such as Roman numerals, and methods to convert the other numeral systems into Arabic numerals. Replacing the Roman numeral system, its [[ancient Egyptian multiplication]] method, and using an [[abacus]] for calculations, with an Arabic numeral system, was an advance in making business calculations easier and faster, which led to the growth of banking and accounting in Europe.<ref name="Fibonacci: The Man Behind The Math">{{Cite web|title = Fibonacci: The Man Behind The Math|url = http://www.npr.org/2011/07/16/137845241/fibonaccis-numbers-the-man-behind-the-math|website = NPR.org|accessdate = 2015-08-29}}</ref><ref name=":0">{{Cite web|title = The Man of Numbers: Fibonacci's Arithmetic Revolution [Excerpt]|url = http://www.scientificamerican.com/article/the-man-of-numbers-fibona/|accessdate = 2015-08-29|first = Keith|last = Devlin}}</ref>
{{redaktata}}
TheLa 1228eldono editionde 1228, first section, introduces the Arabic numeral system and compares the system with other systems, such as Roman numerals, and methods to convert the other numeral systems into Arabic numerals. Replacing the Roman numeral system, its [[ancient Egyptian multiplication]] method, and using an [[abacus]] for calculations, with an Arabic numeral system, was an advance in making business calculations easier and faster, which led to the growth of banking and accounting in Europe.<ref name="Fibonacci: The Man Behind The Math">{{Cite web|title = Fibonacci: The Man Behind The Math|url = http://www.npr.org/2011/07/16/137845241/fibonaccis-numbers-the-man-behind-the-math|website = NPR.org|accessdate = 2015-08-29}}</ref><ref name=":0">{{Cite web|title = The Man of Numbers: Fibonacci's Arithmetic Revolution [Excerpt]|url = http://www.scientificamerican.com/article/the-man-of-numbers-fibona/|accessdate = 2015-08-29|first = Keith|last = Devlin}}</ref>
 
The second section explains the uses of Arabic numerals in business, for example converting different currencies, and calculating profit and interest, which were important to the growing banking industry. The book also discusses irrational numbers and prime numbers.<ref name=":1">{{Cite web|title = The Man Behind Modern Math|url = http://www.barrons.com/articles/the-man-behind-modern-math-1440227497|accessdate = 2015-08-28|first = John Steele|last = Gordon}}</ref><ref name="Fibonacci: The Man Behind The Math"/><ref name=":0" />
177 751

redaktoj