Malfermi la ĉefan menuon

Ŝanĝoj

e
Apliko pri teorio de relativeco
[[Dosiero:Hyperbolic triangle.svg|eta|250px|dekstra|Triangulo mergita en seloformo ebeno ([[paraboloido]]), kaj ankaŭ du deturniĝantaj ekstraparalelaj linioj.]]
'''Diferenciala Geometrio''' estas [[Matematiko|matematika]] disciplino kiu uzas la metodojn de [[diferenciala kalkulo|diferenciala]] kaj [[Integralo|integrala]] [[infinitezima kalkulo]], kaj ankaŭ [[lineara algebro|lineara]] kaj [[multlineara algebra]], por studi problemojn pri [[geometrio]]. La teorio de ebenaj kaj spacaj [[Diferenciala geometrio de kurboj|kurboj]] kaj de [[Diferenciala geometrio de surfacoj|surfacoj]] en la tri-dimensia [[Eŭklida spaco]] formis la bazon por la 18a kaj [[19a jarcento]]j. Ekde la fino de la 19a jarcento, diferenciala geometrio evoluis en kampo pli interesita pri geometriaj strukturoj sur [[Dukto|diferencialaj duktoj]]. Estas rilata kun [[diferenciala topologio]] kaj kun la geometriaj aspektoj de la [[diferenciala ekvacio|diferencialaj ekvacioj]]. [[Grigori Perelman]]-a pruvo de la [[Konjekto de Poincaré]], uzante la teknikojn de [[Ricci-a fluo]], montris la potencon de la diferencialageometria metodo por problemoj pri [[topologio]] kaj reliefigis la gravan rolon de la analitikaj metodoj.
 
Estas rilata kun [[diferenciala topologio]] kaj kun la geometriaj aspektoj de la [[diferenciala ekvacio|diferencialaj ekvacioj]]. [[Grigori Perelman]]-a pruvo de la [[Konjekto de Poincaré]], uzante la teknikojn de [[Ricci-a fluo]], montris la potencon de la diferencialageometria metodo por problemoj pri [[topologio]] kaj reliefigis la gravan rolon de la [[analitiko|analitikaj]] metodoj.
 
Diferenciala geometrio havas sian precipan aplikon en la [[ĝenerala teorio de relativeco]], kie ĝi permesas [[matematika modelo|modeli]] [[kurbeco (kurbo)|kurbecon]] de [[spactempo]].
 
[[Kategorio:Diferenciala geometrio]]
7 236

redaktoj