Loka ringo

En algebro, loka ringo estas komuta ringo kun unika maksimuma idealo. En algebra geometrio, loka ringo priskribas la "ĉirkaŭaĵon" de unu punkto (la unika maksimuma idealo).

DifinoRedakti

Komuta ringo   estas loka, se ĝi plenumas unu el la jenaj ekvivalentaj aksiomoj:

  •   havas unikan maksimuman idealon.
  •  , kaj la sumo de du neinversigeblaj elementoj estas neinversigebla.
  •  , kaj se   estas ajna elemento, tiam aŭ    (aŭ ambaŭ) estas inversigebla.
  • Por nenegativa entjero  , se   estas inversigebla, tiam ekzistas tia  , ke   estas inversigebla. (En la speciala kazo   tio signifas, ke la tiel nomata nul-sumo 0 ne povas esti inversigebla, t.e. 1 ≠ 0.)

EkzemploRedakti

Ĉiu komuta korpo estas loka ringo: la unika maksimuma idealo estas (0).

La ringo de formalaj potencoserioj   estas loka ringo: la unika maksimuma idealo estas  .

NeekzemplojRedakti

La triviala ringo   ne estas loka ringo; ĝi havas neniun maksimuman idealon.

La ringo de polinomoj   ne estas loka ringo; ĝi havas plurajn maksimumajn idealojn.

Eksteraj ligilojRedakti