Koneksa spaco: Malsamoj inter versioj

3 bitokojn forigis ,  antaŭ 3 monatoj
e
→‎Ekzemploj: Lingva plibonigo
[kontrolita revizio][kontrolita revizio]
e (→‎Ekzemploj: eta precizigo)
e (→‎Ekzemploj: Lingva plibonigo)
Etikedoj: Poŝtelefona redakto Redakto de poŝaparata retejo Altnivela poŝaparata redaktado
Ĉiu [[intervalo]] en <math>\mathbb R</math>, ĉu fermita ĉu nefermita ĉu duonfermita, estas koneksa spaco.
 
La subspaco <math>X=[0,1]\cup[2,3]</math> ene de <math>\mathbb R</math> ne estas ne koneksa, ĉar ĝi estas la kunigaĵo de la du subaroj <math>[0,1]</math> kaj <math>[2,3]</math>, kiuj estas malfermitaj subaroj de <math>X</math> (sed ne de <math>\mathbb R</math>).
 
== Eksteraj ligiloj ==