Densa aro

subspaco de topologia spaco, kies fermaĵo estas la tuta spaco
Estas neniuj versioj de ĉi tiu paĝo, do ĝi eble ne estis kvalite kontrolita.

En topologio kaj rilataj areoj de matematiko, subaro A de topologia spaco X estas nomata densa (en X) se, ĉiu punkto en X povas esti "bone-aproksimita" per punktoj en A. Formale, A estas densa en X se por ĉiu punkto x en X, ĉiu najbareco de x enhavas almenaŭ unu punkton de A.

Ekvivalente, A estas densa en X se la sola fermita subaro de X enhavanta A-on estas X mem. Ĉi tiu povas ankaŭ esti esprimita per tio ke la fermaĵo de A estas X, aŭ ke la malfermaĵo de la komplemento de A estas malplena.

Alternativa difino en la okazo de la metrikaj spacoj estas jena: aro A en metrika spaco X estas densa se ĉiu en estas limigo de vico de eroj en A.

Ekzemploj

redakti

Vidu ankaŭ

redakti