Dutranĉita 120-ĉelo

En geometrio, la dutranĉita 120-ĉelodutranĉita 600-ĉelo estas uniforma plurĉelo. Kiel la nomoj sugestas, ĝi povas esti farita per dutranĉo de la regula 120-ĉelo aŭ per dutranĉo de la regula 600-ĉelo.

Dutranĉita 120-ĉelo
Plia nomo Dutranĉita 600-ĉelo
Bildo
Rektlinia sfera projekcio (proksime)
Speco Uniforma plurĉelo
Vertica figuro Dulatera dukojnosimilaĵo (malregula kvaredro)
Simbolo de Schläfli t1,2{5,3,3}
Simbolo de Bowers Xhi
Verticoj 3600
Lateroj 7200
Edroj 4320
Ĉeloj 120 senpintigitaj dudekedroj (5.6.6)
600 senpintigitaj kvaredroj (3.6.6)
Geometria simetria grupo H4, [3,3,5]
Propraĵoj Konveksa
vdr

Vidu ankaŭ

redakti

Referencoj

redakti
  • Kalejdoskopoj: Elektitaj skriboj de H.S.M. Coxeter, redaktita de F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 [1]
    • (Papero 22) H.S.M. Coxeter, Regulaj kaj duonregulaj hiperpluredroj I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
    • (Papero 23) H.S.M. Coxeter, Regulaj kaj duonregulaj hiperpluredroj II, [Math. Zeit. 188 (1985) 559-591]
    • (Papero 24) H.S.M. Coxeter, Regulaj kaj duonregulaj hiperpluredroj III, [Math. Zeit. 200 (1988) 3-45]
  • John Horton Conway kaj Michael Guy: Kvar-dimensiaj arĥimedaj hiperpluredroj, Paperoj de la Kolokvo sur Konvekseco je Kopenhago, paĝo 38 kaj 39, 1965
  • Norman Johnson: La teorio de uniformaj hiperpluredroj kaj kahelaroj, Ph.D. Disertaĵo, Universitato de Toronto, 1966

Eksteraj ligiloj

redakti