Alte komponigita nombro
Klasifiko de entjeroj laŭ dividebleco |
Formoj de faktorigo: |
Primo |
Komponita nombro |
Pova nombro |
Kvadrato-libera entjero |
Aĥila nombro |
Nombroj kun limigitaj sumoj de divizoroj: |
Perfekta nombro |
Preskaŭ perfekta nombro |
Kvazaŭperfekta nombro |
Multiplika perfekta nombro |
Hiperperfekta nombro |
Unuargumenta perfekta nombro |
Duonperfekta nombro |
Primitiva duonperfekta nombro |
Praktika nombro |
Nombroj kun multaj divizoroj: |
Abunda nombro |
Alte abunda nombro |
Superabunda nombro |
Kolose abunda nombro |
Alte komponigita nombro |
Supera alte komponigita nombro |
Aliaj: |
Manka nombro |
Bizara nombro |
Amikebla nombro |
Kompleza nombro |
Societema nombro |
Nura nombro |
Sublima nombro |
Harmondivizora nombro |
Malluksa nombro |
Egalcifera nombro |
Ekstravaganca nombro |
Vidu ankaŭ: |
Divizora funkcio |
Divizoro |
Prima faktoro |
Faktorigo |
Alte komponigita nombro estas entjero n , kiu havas pli da divizoroj ol ĉiu entjero m pli malgranda ol n.
Ekzemple, 12 estas la plej malgranda entjero kun ses divizoroj (1, 2, 3, 4, 6, kaj 12). Pro tio ĝi estas alte komponigita nombro. Jen listo de la plej malgrandaj:
1, 2, 4, 6, 12, 24, 36, 48, 60, 120, 180, 240, 360, 720, 840, 1260, 1680, 2520, 5040, 7560, 10080 ... (nefinie)
La kvanto de la alte kompon(ig)itaj nombroj estas nefinia, ĉar je iu ajn alte kompon(ig)ita nombro n ekzistas inter n kaj ties duoblo 2*n almenaŭ unu cetera da ili.
La koncepto estis unue priskribita fare de Srinivasa Aiyangar Ramanujan (1887-1920).
ReferencoRedakti
- Srinivasa Aiyangar Ramanujan, Highly Composite Numbers (provizore e-lingve: Alte kompon(ig)itaj nombroj), Proc. London Math. Soc. 14, 347-407, 1915; represita en Collected Papers (Kolektitaj paperoj) (Red. G. H. Hardy kaj aliaj), Novjorko: Chelsea, pp. 78–129, 1962
Vidu ankaŭRedakti
Eksteraj ligojRedakti
- pli ... paĝo de Achim Flammenkamp, universitato Bielefeld (anglalingve).
- vico de la 1200 plej malgrandaj alte komponigitaj entjeroj (sub-)paĝo de Achim Flammenkamp