Senpintigita 4-hiperkubo

Estas neniuj versioj de ĉi tiu paĝo, do ĝi eble ne estis kvalite kontrolita.

En geometrio, la senpintigita 4-hiperkubo estas konveksa uniforma plurĉelo.

Senpintigita 4-hiperkubo
Bildo
Figuro de Schlegel kun kvaredraj ĉeloj montritaj
Speco Uniforma plurĉelo
Vertica figuro Egallatera triangula piramido (malregula kvaredro)
(3 senpintigitaj kuboj kaj 1 kvaredro kuniĝas je ĉiu vertico)
Bildo de vertico Bildo de vertico
Simbolo de Schläfli t0,1{4,3,3}
Figuro de Coxeter-Dynkin (o)4(o)3o3o
Verticoj 64
Lateroj 128
Edroj 64 trianguloj {3}
24 oklateroj {8}
Ĉeloj 8 3.8.8
16 kvaredroj (3.3.3)
Geometria simetria grupo A4, [4,3,3]
Propraĵoj Konveksa
vdr

Ĝi estas barita per 24 ĉeloj: 8 senpintigitaj kuboj, kaj 16 kvaredroj.

Konstruado

redakti

Kiel la nomo sugestas, la senpintigita 4-hiperkubo povas esti konstruita per senpintigo de verticoj de la regula 4-hiperkubo je   de latera longo. Regula kvaredro estas formita anstataŭ ĉiu fortranĉita vertico.

Projekcioj

redakti
 
Stereobildo de 3-dimensia projekcio de senpintigita 4-hiperkubo.

La senpintigita-kubo-unua paralela projekcio de la senpintigita 4-hiperkubo en 3-dimensian spacon estas jena:

  • La projekcia koverto estas kubo.
  • 2 el la senpintigitaj kubaj ĉeloj projekciiĝas sur senpintigitan kubon enskribitan en la kuba koverto.
  • La aliaj 6 senpintigitaj kubaj ĉeloj projekciiĝas sur la kvadratajn edrojn de la koverto.
  • La 8 neregulaj kvaredroj inter la koverto kaj triangulaj edroj de la centra senpintigita kubo estas la bildoj de la 16 kvaredraj ĉeloj, po 2 ĉeloj al ĉiu bildo.

Bildoj

redakti
 
Reta hiperpluredro
 
Senpintigita 4-hiperkubo projekciita sur la 3-sferon kun rektlinia sfera projekcio en 3-spacon.

Vidu ankaŭ

redakti

Eksteraj ligiloj

redakti