En matematiko, alĝebro de Lie estas algebra strukturo (alĝebro) kun malsimetria dulineara operacio (la Lie-krampo) kiu plenumas la Jacobi-identon. Super reelakompleksa korpo, alĝebro de Lie priskribas la infiniteziman strukturon de reela aŭ kompleksa grupo de Lie.

Difino

redakti

Se   estas komuta ringo (kun idento), alĝebro de Lie super   konsistas el  -modulo   kune kun dulineara mapo

 

(la Lie-krampo) kiu plenumas la jenajn du aksiomojn:

  • (alterneco) por ĉiu  , do  
    • Konsekvence, por ĉiu  , do   (malsimetrieco). Se  , do malsimetrieco kaj alterneco estas ekvivalentaj, sed ĝenerale alterneco estas pli forta ol malsimetrieco.
  • (Jacobi-idento) por ĉiu  , do  .

Rilato kun grupoj

redakti

Se   estas (fini-dimensia) grupo de Lie, tiam la tanĝa spaco   estas reela fini-dimensia alĝebro de Lie. Inverse, se   estas fini-dimensia reela alĝebro de Lie, tiam ekzistas grupo de Lie asociita kun  . (Tiu grupo estas, ĝenerale, ne unika.)

Simile, kompleksa alĝebro de Lie estas asociita kun kompleksa grupo de Lie.

Historio

redakti

La koncepton de la alĝebro de Lie difinis Sophus Lie, dum lia studado pri grupoj de Lie.

Referencoj

redakti
  • Bourbaki, Nicolas. (2006) Éléments de mathématique : Groupes et algèbres de Lie (france). Springer-Verlag.

Eksteraj ligiloj

redakti