Disĵeto

funkcio f tia ke, se f(x) = f(y), do x = y
Matematikaj funkcioj
Argumentaro, Celaro, Bildaro, Malbildo
Fundamentaj funkcioj
algebraj funkcioj:
konstantalinearakvadratapolinomaracionalaTransformo de Möbius
ceteraj funkcioj:
trigonometriajinversa trigonometriahiperbolaeksponentalogaritmapotenca
Specialaj funkcioj
eraraβΓζηW de Lambertde Bessel
Nombroteoriaj funkcioj:
τσde Möbiusφπλ
Ecoj:
pareco kaj malparecomonotonecobaritecoperiodecodisĵetecosurĵetecodissurĵeteco
kontinuecoderivaĵecointegralebleco


Matematika funkcio estas disĵeto (aŭ, paŭsante internacie rekoneblan gentalingvan formon, injekcio, enĵeto aŭ eĉ enjekcio), se ĝi atingas ĉiun valoron maksimume solfoje. Tio signifas, ke neniu elemento de ĝia bildaro (valoraro) estas bildo de pli ol unu argumento. Alivorte, disaj argumentoj havas disajn bildojn (neniuj «kungluiĝas»).

Formala difinoRedakti

Estu   kaj   aroj, kaj   funkcio de   al  .

  estas disĵeto, se por ĉiu   el   ekzistas ne pli ol unu tia   el   ke  .
 .

Ekvivalenta difino:Redakti

  nomiĝas disĵeto, se por ĉiuj  ,   el   kaj   el   validas: se   kaj  , tiam  .
 .

Lingva noto pri «enĵeto» kaj «enjekcio»Redakti

 
Ekzemplo pri «ĵeto en»

Ĉar surĵeto (aŭ «surjekcio») estas «ĵeto sur la tutan celan aron», tial la normala lingva logiko postulas, ke enĵeto estu «ĵeto en la celan aron» (t.e. tia «ĵeto», kiu ne estas «surĵeto»). Tamen iuj matematikistoj, meĥanike paŭsante la malracian internacian terminon injection, uzas la vorton «enĵeto» por la signifo «disĵeto», la signifo kiu neniel sekvas el «en» + «ĵeto». Tio estas ne nur malracia, tio estas misgvida kaj nepre evitinda. Se oni ial malvolas uzi la klaran esperantan prefikson dis- kaj preferas neanalizindan terminon internacian, oni prefere diru injekcio (samkiel oni diras projekcio), sen traduki la misgvidan in-.

Vidu ankaŭRedakti